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Abstract. We investigate the exact integrability of the one-dimensional (1D) Bariev model

in the framework of the quantum inverse scattering method (QISM). Using the Jordan-Wigner
transformation, the 1D Bariev model can be regarded as a coupled spin model. We construct
the higher conserved currents which commute with the Hamiltonian. The explicit form of the
conserved currents helps us to infer h@perator of the 1D Bariev model. From theoperator,

we construct a transfer matrix which is a generating function of the conserved currents. We
also find the corresponding-matrix which satisfies the Yang—Baxter relation. Thus the exact
integrability of the 1D Bariev model is established. TRematrix does not have the ‘difference
property’ for the spectral parameter, as in the case of the 1D Hubbard model. We also provide
the Lax representation and the fermionic formulation of the Yang—Baxter relation.

1. Introduction

Recently, there has been much interest in the strongly correlated electron systems in relation
to high-T. superconductivity. Several models have been proposed. Among them, some are
known to be exactly solvable in one dimension by the coordinate Bethe ansatz [1-4]. The
one-dimensional (1D) Hubbard model and the supersymmetric t-J model are the most famous
ones and have been investigated quite rigorously. Based on the Bethe ansatz equation, we
can extract many physical properties of the models (see the reprint volume [5]). For example,
it is possible to obtain the low-energy gapless excitation spectrum around the ground state
by the finite-size scaling method [6, 7]. It exhibits the universal long-distance properties
of these models which are characterized as a Tomonaga— Luttinger liquid. The critical
exponents of the correlation functions can also be evaluated by use of the predictions of
conformal field theory (CFT) [8-10].

On the other hand, the quantum inverse scattering method (QISM) is the most powerful
method to treat the 1D exactly solvable models [11-15]. The QISM allows us to show the
existence of an infinite number of conserved currents and the diagonalization of the transfer
matrix. It is also possible to derive the explicit expressions for the correlation functions
if we can apply the algebraic Bethe ansatz [15]. With this approach, we can say that the
critical exponents of the correlation functions depend only on the underRdngatrix which
satisfies the Yang—Baxter equation [15]. Thus it is desirable to investigate the 1D exactly
solvable models from the point of view of the QISM.

For the supersymmetric t-J model, the QISM has been successfully applied. The higher
conservation laws are established, and the transfer matrix is diagonalized by means of
the algebraic Bethe ansatz [16,17]. For the 1D Hubbard model, the situation is not so

0305-4470/97/041115+19$19.5@C) 1997 IOP Publishing Ltd 1115



1116 M Shiroishi and M Wadati

conclusive. The machinary of the QISM was only partially applied. Shastry introduced the
Jordan-Wigner transformation to change the model into the coupleanodel and found

some non-trivial higher conserved currents [18]. From the form of the higher conserved
currents, the corresponding two-dimensional (2D) classical statistical model was inferred
[18]. The integrability of the model was proved by showing the Yang—Baxter relation,
which assures the existence of an infinite number of conserved currents [19—-22]. However,
because of the complexity of thR-matrix, the diagonalization of the transfer matrix is

a very difficult problem [20]. The spectral parameter of tRematrix does not have the
‘difference property’ (3.3) (see later), which makes, for example, the conservation laws very
complicated. In this sense, the 1D Hubbard model has been considered as an exceptional
model among the exactly solvable models. We note that the algebraic Bethe ansatz used
to obtain the eigenvalues of the transfer matrix has recently been reported by Ramos and
Martins [24].

Another type of 1D highly correlated electron system was proposed and solved by
Bariev (1D Bariev model) [3]. The Hamiltonian does not have a Coulomb interaction term,
but has the bond-charge interaction which makes the hopping of the electrons correlated. It
resembles the Hirsch’s hole superconductivity model [24, 25]. The spin excitations of the
1D Bariev model have a gap and only the charge excitations are gapless. From the finite-
size scaling analysis, it was shown that the 1D Bariev model in the attractive case actually
has a tendency of the superconductivity [25]. That is, there is a region where the correlation
of the superconducting singlet pairs is dominant over the density—density correlation [25].
For the above reasons, the 1D Bariev model and its related models have attracted much
attention [27-29].

The 1D Bariev model can also be regarded as the cou¥lédnodel by means of the
Jordan—Wigner transformation, which allow us to put the model in the framework of the
QISM. As a coupled spin model, the 1D Bariev model is nothing but a linear combination
of the two non-interactiv&Y models and the generalizedy model [30].

The aim of this paper is to investigate the 1D Bariev model in the framework of the
QISM. Since the 1D Bariev model has an interpretation of the couglEdnodel, we can
apply the method developed in the case of the 1D Hubbard model. This approach for the
1D Bariev model was studied by Zhou to some extent [31]. We first discuss the higher
conserved currents of the 1D Bariev model in detail. From the explicit form of the higher
conserved currents, we can assume Iheperator and the transfer matrix. We propose a
different L-operator from Zhou’s. We have also found the correspondifngatrix, which
fulfills the Yang—Baxter relation. Thus the exact integrability of the 1D Bariev model is
established. The obtaingttmatrix enjoys some properties in common with fhenatrix for
the 1D Hubbard model. In particular, thiematrix does not have the ‘difference property’
(3.3) for the spectral parameter. Moreover, the constraints among the spectral parameters
take a very similar form to the 1D Hubbard model. Our results may provide a basis for the
further study of the 1D Bariev model.

The outline of this paper is as follows. In section 2, we introduce the 1D Bariev model
and its equivalent spin model. In section 3, we first discuss a peculiarity of the Hamiltonian
which prevents the recursive construction of the higher conserved currents. Then we adopt
a more direct method to find the higher conserved currents. In section 4, we propose a hew
L-operator. The commutativity of the transfer matrix and the Hamiltonian is proved by
means of the Sutherland equation. In section 5, we solve the Yang—Baxter relation to obtain
the explicit expression of the-matrix. We also discuss some fundamental properties of the
R-matrix. In section 6, we present the Lax representation of the 1D Bariev model which
follows from the Yang—Baxter relation. In section 7, we formulate the Yang—Baxter relation
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in a fermionic fashion, by use of the Jordan—Wigner transformation. The last section is
devoted to concluding remarks. The Yang—Baxter equation foRtheatrix is conjectured.

2. The 1D Bariev model

Let ¢}, andc,, denote fermionic creation and annihilation operators with spinsor |)
at siten (n =1, 2, ..., N). They satisfy the anti-commutation relations

{Cns’ cn’x’} = {C;TM’ Cj”/} =0 {Cjzs’

Cors'} = Sy (2.1)
The Hamiltonian of the 1D Bariev model [3] is

Heariev=— Y _[(ch,11nt + €}y car1r) XPmai1)) + (c]cusay + €l cny) EXRM)]

' (2.2)

wheren is the coupling constant describing the correlated hoppingrands the number
density operator

Nps = Ci‘ycny (23)

We introduce the Jordan—-Wigner transformation which connects the fermion operators
and the spin operators,

n—

1
Cpp = exp(in Z(I’lm — l))on

=1

n—1 N
Cpy = exp(in Z(’W — 1)) exp(in Z(”’T — 1)>rn‘. (2.4)
=1 =1

Hereo andrt are two species of the Pauli matrices and commute each other. Applying the
Jordan-Wigner transformation (2.4) to the Hamiltonian (2.2), and multiplying an overall
factor, we obtain the following coupled spin model,

H= Z Hyy10 = Z[(U:jorz_+l + 0{0,111)(1 + Ufrf-p-l) + (Trjrrn_-&-l + Tr:f:+1)(1 +Uo,)]
(2.5)
where

U= tanhg. (2.6)

3. Conserved currents

We investigate the exact integrability of the 1D Bariev model. It is a starting point to
look for the higher conserved currents, which commute with the Hamiltonian. One readily
verifies that the Hamiltonian densitif,1, does not satisfy the so-called Reshetikhin’s
criterion [13] unlessU = 0, orco. That is, if U is a non-zero finite constant, the double
commutator

[Hi2 + Has, [Hiz, Hog] (3.1)
cannot be expressed as

X12 — Xo3 (3.2)
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where X;; is an operator which depends only on the spa@nd j. The Reshetikhin’s
criterion follows from the assumption that tiematrix of the model has the ‘difference
property’ for the spectral parameter,

R(u,v) = R(u — v). (3.3)

This fact implies that theR-matrix for the 1D Bariev model does not have the ‘difference
property’ (3.3) as in the case of the 1D Hubbard model. If Bamatrix has the ‘difference
property’ and the Reshetikhin’s criterion is satisfied, the higher conserved currents are
recursively produced by taking the commutator with the boost operator [32, 33],

1Y = [B, 1™]. (3.4)
Here
B = ZnHrH-l.n (35)

and I™ is thenth conserved current derived by the logarithmic derivative of the transfer
matrix. Since the Hamiltonian density of the Bariev model does not satisfy the Reshetikhin’s
criterion, we should resort to a more direct method to obtain the higher conserved currents

[20, 34, 35].
The Hamiltonian of the 1D Bariev model can be written as
H=Hy+UH; (36)
where

_ E : +.- -+ +o- -+
Ho = (Un Out1 +o, Un+l) + (Tn Tor1 +71, rnJrl)
n
— § +5- -~ z Z(rto— -+
Hl - (Gn an+l + o Url+l)tn+l + o (Tn ‘CnJrl + Ty InJrl)'
n

We note that thedy (Hy) correspond to th&/ = 0 (U = oo) limit of the 1D Bariev model.
The HamiltonianH; is a special case of the generaliz€d model found by Suzuki [30].
Now we choose the form of the higher conserved currents as follows,

J=J+ Ul +U? (3.7)
K = Ko+ UKy + U?K» 4+ U%K3 (3.8)

where we assume that the currehtcontains at most 3-spin interactions, akd 4-spin
interactions. The explicit form of/; is determined by the commutativity with the
Hamiltonian,

[H,J]=0 (3.9)
which is equivalent to the following set of equations,

[Ho, Jo] = [H1, J2] =0 (3.10)

[H1, Jo] + [Ho, J1] =0 (3.11)

[Ho, J2] + [Hy, J1] = 0. (3.12)

Since the Reshetikhin’s criterion is satisfied in the cages 0 andU = oo, the explicit
forms of Jy and J, are calculated by using the boost operator approach,

— +t 525" P + .- .+
Jo= Z[(Gn—lon Opt1 — 94—19%, Gn+1) + (tn—ltn Tl — Tp—1Th rn+l)]
n

— + 2 - z.+ 2.2 z 2+t .- - .+
Jo= Z : [(an—lan Opt1 — 9419, Gn+1)fn Tt + 0,10, (Tn—lfn il Tu—1Th Tn+1)]’ (313)
n
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SubstitutingJo and J, into (3.11) and (3.12), we find

Ji= Z[(Untlarfgnjrl —0,_10,0,5 ) (T + i) + (01 + o) (T, 1Tt — T, 4T )
! +40,_10, T, Ty — 0,010, T T,00)
+4(0, 0,517, T — 0, 0,017, 1,0 0)] (3.14)
which was first found by Zhou [31]. Similarly, we can construct the conserved cukrent
This time the condition

[H K] =0 (3.15)
is equivalent to

[Ho, Ko] = [H1, K3] =0 (3.16)

[H1, Ko] + [Ho, K1] =0 (3.17)

[H1, K1] + [Ho, K2] =0 (3.18)

[Hy, K3] + [Ho, K3] = 0. (3.19)

The result is as follows,

Ko = Z[(O'}jflo-rtzo‘rterlGn:LZ + 0, 10,0,10,00) + (T 4T 1T + Ty 1T T T )]
" (3.20)
Ky = Z[(6;71050;+10n7+2 + 0, 107010, ) (T + Ti g + T o)
! R CAIPIS A S ATE) (AR AL AIPE MPE S MIPY AL ANEEAIPY)
—Mo, 1050, (T T i T )
+‘7r;1‘7rfan++l(fnilfrj + Tn_rrjzrl + TI;+1T’;:'2)

+ 4 + 45— + - +.,2
+(Un—1an + Ty 011+1 + O'n+10n-',-2)‘rn Tn-&-l n+2

+(0, 10, +0, 0,1+ 0,110,507, 71T, 5l (3.21)

Kz = Z[(Jntlanzgrfﬂaniﬂ + Gnilanzarfﬂoiilrz)(trffrfﬂ + T Tisz + T Try2)
! F(04_10; + 050,01 + 05100 D (T T T T T T T T T )
—M0, 10,0, 1T 1Ty Tipa + 0, 1050, T 4T T
0,10, 01T 1T Ty 0510, 0 T T
+Grj_—1‘71:‘7:f+1":n+frf+1fn_+2 + U;:—larjorf+1fr:frf+lfr::2
‘H’ntl"rf 1T ‘Cntrltn:LZ + Gnilarfarﬁlf,ff;ﬂfﬂz)

+ -+ - - + +
+4(611—1Un Tn—ltn-&-l + Gn—lon n—ltn+1

o= - -+ -+
+0nflan+ltn Totl + 041-1%4+1Tn Tn+l)]
Ka= ) [(6 ,0%0% 0. ,+0 _,0°0% 0" )1°1% ,T°
3= n—1"n"n+1%n+2 n—1Yn"n+1%n+2’ *n *n+1"n+2
n z z.Z + 7.2 - - 12,7 +
+anlon O'nJrl(""n—ll’:n rll+1rn+2 + T—1T TVlJrltVl-l-Z)]' (3'22)

The conserved currents are supposed to be involutive. In fact, we have verified that

[/,K]=0 (3.23)
which now is equivalent to

[Jo, Kol = [J2, K3] =0 (3.24)

[Jo, K1] +[J1, Ko] =0 (3.25)

[Jo, K2] + [J1, K1) + [J2, Ko] =0 (3.26)
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[Jo, K3] + [J1, K2] + [J2, K1] =0 (3.27)
[J1. K3] + [ /2, K] = 0. (3.28)

4. L-operator

In this section, we discuss tHe-operator and the transfer matrix for the 1D Bariev model.
The transfer matrix is written in the standard form,

T(u) =ty [ [ Lua@) =tra[Lya@ Ly 14@) ... L1,w)] (4.2)

whereaq is the auxiliary variable corresponding to the horizontal arrows in the row-to-row
transfer matrix. We want to find a set of transfer matrices with a different value of the
spectral parameter which commute mutually,

[T ), T(v)] =0. 4.2)
Usually, the commutativity of the transfer matrix is guaranteed by the existence of the
R-matrix which satisfies the (local) Yang—Baxter relation [11-15, 36],

Rio(u, v)[ Ly () ® Ly ()] = [L,,(v) ® L ()] Raz(u, v). (4.3)

First, we discuss the two special casés = 0, c0). In these cases, the Yang—Baxter
structures are already known.

(1) U = 0. The Hamiltonian decouples into the two non-interactk/é models, and
the L-operator is

L5726) = L O)L,7,6) (4.4)
where

L) ©) = 3cos9(1+ai0) + 3siN0(1 —070) + (0,70, + 0, 0,)

Lfi;(@) = %COS@(l—i— Titl) + %sin@(l -t +(tt, +t ). (4.5)
Correspondingly, the&R-matrix is given by

RO=2(01 — 62) = RS (61 — 02) RS (61 — 62) (4.6)
where
R (01— 62) = L cog61 — 62) (1 + 0f03) + Sinb1 — 62) (0, 07 + 017 0;) + 3(1 — ofo)
RS (61— 62) = I costr — 0) (L + 7it§) + sin(01 — ) (1 1, + 1 15) + 31 — 7i15).

4.7

(2) U = co. As noted in section 3, the 1D Bariev model reduces to Suzuki’'s generalized
XY model [30] in theU = oo limit, and the Yang—Baxter relation for this model was found
by Lopez [37]. TheL-operator is

LU= () = (S cosyr (1 + 00f) + 3 siny (1 — 0i0))T} + (0,70, +0,70,)}

n,a

x{3 cosyr (L + 7td) + 3siny (1 — titd)of + (¢ 7, + 1) 7)) (4.8)
The corresponding®-matrix is given by
R (W1 — ) = Fiol R (Y — Y2) RS (W1 — Yo} it (4.9)

where
Fio=11+0f + 15 —oft)). (4.10)
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We note some useful relations for the operafts,

F122 =1

Flg{(afaz_ + al_a;) + ('L’l+‘[2_ + ‘L’l_t2+)}F1_21 = (afaz_ + 01_05’)12Z + of(rfrz_ + rl_r2+).
(4.112)

The R matrix (4.9) is related to the trigonometric limit of the quantum Clifford—Hopf algebra
CH, (%) [37].

Now we look for theL-operator for general/. We assume that the-operator has the
following expansion in powers of the spectral paramater

MZ bt3
Ln,a(u) = Pn,a <1+ an,a + EBn,a + ?Cn,a +-- ) (412)
where P, , is the permutation operator.iischer [38] has shown that, if the transfer matrix
consists of theL-operator (4.1) and the transfer matrices commute mutually, thentthe
logarithmic derivative of the transfer matrix,

dn
=2 In(Tfl(O)T(u))) (4.13)
dbt" u=0
is thelocal conserved currents in involution,
[1™, 1™ =0. (4.14)

Here the termlocal means that/ ™ contains at mosk + 1 spin interactions. Using the
expansion of thel.-operator (4.12), the explicit forms of the conserved currents are, for
instance, given as [20, 39],

Y = Z Hyp1 (4.15)
1P =>"Byu1—HZ\ 1)+ > [Horrn: Hyn il (4.16)

19 =% "(Cop1—H, 1)
n
3 2 2
_é Z{Hn,n—l(Bn,n—l - Hn,n—l) + (Bn,n—l - Hn,n_l)Hn,n—l}
n
3 2 2
+é Z{[Htﬁl,na Bn.nfl - Hn,nfl] + [BnJrl,n - Hn+1,na Hn.nfll}
n

1
+§ Xn:{[Hn+1,ns [Hn+l,nv Hn,nfl]] + [[HnJrl,nv Hn,nfl]s Hn,nfll}

+2 Z[[ HnJrl,nv Hn,nfl]a anl,n72]- (417)

In general, the conserved currents are not determined uniquely, since we can add any lower
conserved currents to redefine the higher one. However, if we assume

H=19 J=1? K =1 (4.18)

then we can determine the higher terms in (4.12) as follows:

Bup1= 31— 07 10)A+UtH*+ 31— 17 11H A+ Usi_y)?

+2(0," 0, +0, 10, A+Uos’ DA+ UTH)(z, 17, + 7, 17))
Con1= 3(0, 10, + 0, 10,01+ Uoi D?(1+ Ut (L —17_177)

n

+3 g+ Lt A+ Usi A+ Ut)? (A — 15470, (4.19)
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Based on these results, Zhou [31] found.-@perator for the 1D Bariev model,
Lua) =L, L] ,(u) (4.20)

where

L, )= %(1 +ofol) + %(1 — 00 A+ Utiu + (o, 0, + 0;6;)\/1 + A+ Ut?)%u?

Ly )=+t + A+ Vo)A — ritdu + \/1 + A+ Uo»Hu(t t, + 1, 7).
(4.21)
The corresponding-matrix, which satisfies the Yang—Baxter relation
R(u, )[Ly() ® Ly ()] = [Ly(©) ® Ly ()] R(u, v) (4.22)

was also found [31].

There are some disadvantages aboutltheperator (4.21).

(1) The L-operator (4.21) does not reduce to (4.4) and (4.8) if we take the lithitsO
and U = oo, respectively. The correspondimgymatrix is not useful when we discuss the
difference property (3.3).

(2) Itis not easy to formulate the Yang—Baxter relation in a fermionic fashion using the
L-operator (4.21).

We shall, therefore, look for anothéroperator for the 1D Bariev model which includes
(4.4) and (4.8) as special cases. First, we assumé ibperator as

Ly,=L"LR (4.23)
where
LY = Jcodd + Y11+ 070f) + 3Sin0 + Y11 — 0f0f) + (0,70, + 0, 0,)

2
L? = Jcod + yo)(1+ 1itd) + 3sin0 + o)L — 1itd) + (17, + 1, 7)), (4.24)

n,a

Hered andy are assumed to be spectral parameters. However, as we will see shortly,
and are not independent. Next, we consider the following relation,

[Hn+1,na LnJrl,a Ln,a] = QnJrl,a Ln,a - Ln+1,a Qn,a (425)

where H,.; , is the Hamiltonian density an@,, , is some operator. This kind of equation
was used to show the commutativity of the 1D quantum spin Hamiltonians and the transfer
matrix of the 2D classical vertex models [40,41,18]. In fact, if there exists an operator
which satisfies (4.25), then the transfer matrix constructed from_toperator commutes

with the Hamiltonian. We call equation (4.25) the Sutherland equation [14]. We assume
the operatorQ, , in the form

Qll 12.’:7 1307 1407.’:7
N G e 126
O orer oFin op oy 0
oveftS  Qer O o
where 0%, (i,j=1,...,4) are the operators which depend ef and zZ. Substituting
(4.26) into the Sutherland equation (4.25) we find a constraint betwesed :
sin
W _ U (4.27)

sin®
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Recall thatU is the coupling constant of the 1D Bariev model. Under the constraint (4.27),
we can obtainQy/,
O3t = 3(sinD + Usin2y) (o7 + 77) — 5(€os D + U cos ) (1 — 0;77)
02 =-lcosDcosY(1+o7t:+U(of + 7)) + 3sinD cos Y (o7 — 13)
+3Usin2y cos D (1 — o7 7y)
0¥ =—-lcosDcos Y (1+ o7t +U(of + 7)) + 3SinD cos A (o7 — 17)
+3Usin2y cos (1 — ;7))
Ot =—1(sin® + Usin2y) (o7 + 17) — 3(cos D — U cos 2)(1 — o;77)
02 =11-U)sin@ —y)(L+07) — 3L+ U)cost — ¥)(1—0o?)
0¥ =11-U)sin® — )AL+ 1) + A+ U)cos — y)(1 - 77)
0P =-11-U)codd +y)(1+ ) + 5L+ U)sin@® + ¢)(1 - o7)
0% =-11-U)cogf + A+ 1) + LA+ U)sin@ + ) (A - 7))
0% = (cos 2 — U cos D)(sin(® — ¥) (1 + o7) — cosd — ¥) (1 — 079))
033 = 1(cos2 — U cos D)(sin(@ — ) (1 + 17) — cosO — ¥) (1 — 72))
0% = (cos 2 + U cos D)(—cos6 + ¥) (1 + o7) + sin@® + ¥) (1 — 7))
Q% = 3(cos 2y + U cos D)(—cosO + ¥)(1+ 1) + sin@® + ) (1 — 1))
0% =—-0%=2sin2y
0= 0y =0. (4.28)
Thus we obtain a nevi-operator for the 1D Bariev model,

Ly () = {3 co80 + ¥1)(1+ 0/0)) + 3 Sin0 + y12) (L — 00)) + (0,70, +0, 0.}

a

x{3 €080 + Yol)(L+ 1itd)+ 3 sin0O + o) (1 — titd)+(r, 1, + 1, 7))

pi©)q )  prO)7T; 0, G, (0) o, T,
IC)E T (0)g~ (O -t ~a- (0
_ p’l(jtn pn(zq,i( ) 70,1 1 U'an(j (4.29)
on qn (9) O—n 7'—n pn (9)61,1 (9) Pn (9)7:,,
ot 0, q, (0) POt P, (0)q, (0)

where
py () = 3(cosO + ¥) + sin@® + ¥)) £ 3(cosO + ) — sin@® + ¥))o;
PEO) = L(cosd — ¥) +sin@ — ¥)) £ (cogd — ) — sin@ — ¥)o;
g, (0) = 5(CoS(0 + ¥) + Sin( + v)) & 3(COgO + ) — SiN@ + ¥))7;
Gy (0) = 5(CosO — ¥) + Sin(0 — ) & 3(CogO — ¥) — siN@ — Y))7;.

Here the parametey is considered to be a function éf through the constraint (4.27).
Then we write the the Sutherland equation (4.25) as

[Hn+1,11a Ln+1,a(0)Ln,a (9)] = Q11+1A,a(9)Ln,a(9) - Ln+1,a(9)Qn,a(9)- (430)

The Hamiltonian (2.5) is the logarithmic derivative of the transfer matrix

d
H = T(O)*1@T(0) oo (4.31)
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where

T(0) =1ty [ [ Luna(®). (4.32)

5. Yang-Baxter relation

In this section, we discuss the Yang-Baxter relation corresponding to-tperator (4.29).
We look for a 16x 16 matrix R12(01, 62) which satisfies the Yang—Baxter relation
R12(61, 62) [L(61) ® L, (62)] = [L,(82) ® Ly (61)] Raz (61, 62) (5.1)
under the constraint
sin 2y, _ sin 2y, _U
sin®; sin%®,
Following the method proposed by Olmedilé al [21], the non-zero elements of the
R-matrix, R12(6,1, 65), are assumed to be
R,‘,‘ f0ri=l,2,...,16

R>5, R52, R39, Ro3, Ra7, R7,4, R4 10, R104, Ra13R134, Rg 14, R14g8,

(5.2)

R1215, R1512, R1013, R1310, R7.13, R137, R107, R7,10- (5.3)
Using the relations

Py (0)o," = 0,7 pT(0) = cosb + ¥)a,”

PEO)0F = 0FpT () = cogb — Yot

oEpEB) = pF(O)oF =sin@ + Y)o=

o, By (0) = P (0)a, =sin® — y)o,
and the similar relations for spins, we can solve (5.1) to find the non-zero elements of
the R-matrix. The result is

a2 0 0 0 0 0O O OO OO O O O O q
O s 0 0 iy O O O O O O O O O O O
0O 0O e 0 0 0O O Oy O O O O O O O
0 0 O as O O g 0O O a5 0O O o O O O
O a2 0O 0O a6 OO OO O O O O O O O
0 0 0 0 Oap OO O O OO O O OO0
0 0 O 17 0 O g O O 39 0O O a3 O O O
. 0 0 0 0 00O Oauzr O O O O O wia O O
R12(6h, 62) =
0 0O aip 0O 0 0 0O O as O O O O O O O
0 0 O a6 0 O 9 O O o0 O O 5 O O O
0 0 0 0 0 00O 0O 0O Oar O O O OO
0 0 0 0 0 OO O O O Ouag O O 14 O
0 0 0 a21 0 0 a17 0 0 a16 0 0 (07} 0 0 0
0 0 0 0 0 0 Owgsz O O O O O wg O O
0 0 0 0 0 OO O O O Owz 0 O a7 O
0 0 0 0 0 OO O O O OO O O Ocs
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To describe the non-zero elements of fenatrix, we introduce the following abbreviations:
cix = COS0; £ ;) si+ = Sin(6; £ ;) i=12 (5.5)
C14Co— S14+82—
g1 = T2 2P (5.6)
C1-C2+  S1-S24

The second equality fors» is due to the constraint (5.2). Then, the non-zero elements of
the R-matrix are given by

@1(01, 02) = (212014 Cop + S148524) (C1-Co— + Z27551-52-)
@2(01, 02) = (c1Car + 210514524) (C1-Co— + 215 51-52-)
a3(B1, 02) = (c14Cot + 212514524) (25 C1-Co— + S1-52-)
ag(01,62) =1

as(01, 02) = c1-co— + 70551-52—

ap(01, 02) = z10c1-Co— + 5152

a7(01, 02) = c1yCoq + 212514524

ag(B1, 02) = z75C14C2y + 514521

C1. S1— C1.
@g(61,6p) =1+ —+ ( — +) (5, —¢c3.)
C2+ \ 52— C24

a10(61, 02) = 1+ - (SlJr - Cl) (c3_—c3,)

Co— \ S2+ Cop—
@11(01, 02) = (s14C24 — 212014521 (C1-Co— + Z15-51-52-)
@12(01, 62) = (212514 €21 — C1352)(C1-Co + 20551-52°)
@13(01, 02) = (s1-Co— — Z5-C1-852-)(C14+Co4 + Z1251452+)
@14(01, 02) = (z1251-Co_ — c1_52.)(C1rCar + 212514 521)

a15(01, 62) = s1_Co — C14.52—

§1-Co4+
a16(01, 02) = s1-c24 — c1-S24
§14+Co—
a17(61, 62) = s14c0— — C1-S24
§14+Co—
a1g(61, 02) = s14.C2- — C14852-
§1-Co4

a19(01, 02) = (s14.c2- — c1-524)(81-C2y — C14.52_)

§14+Co—
a20(61, 02) = (s1-C2y — c1452-) | s1-C21 — p C1-824

1-C2+
§1-Co4+
021(01, 02) = (S14.Cc2— — c1-524) (51+Cz— - 61+S2—> . (5.7)
§14+C2—
We have normalized th&-matrix so that it satisfies the initial condition
R(61 = b, 6 = 6p) = id (5.8)

where id is the identity operator.
Now we shall observe th& = 0 andU = oo limit of the R-matrix (5.4).
(1) U = 0. The parameterg;, i = 1, 2 are zero ands» is unity, and therefore we have

Ri2(61, 62) —> RV (61 — 62) = R\ (61 — 02) R (61 — 62). (5.9)

(2) U = oo. The spectral parametér,i = 1, 2, are zero, ands, is unity. We consider
V;,i =1, 2, as the spectral parameters. Then

Ri2(61, 02) —> RY™ (Y1 — ¥r2) = Fio( R (Y1 — v2) R (¥r1 — )} Figt (5.10)
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Thus theR-matrix (5.4) reduces to the one discussed in section 4 in the limit 0 and
U = oo.

For the later use, we introduce another equivalent form of the Yang—Baxter relation
(5.1),

Ra2(6h, 02) Ly, 1(01) Ly 2(02) = Ly 2(62) Ly 1(61) R12(61, 62) (5.11)
where, with P;, being the permutation operator,

R12(61, 62) = P1oR12(61, 62). (5.12)
The R-matrix fulfills the following unitarity relation,

R12(02, 01) R12(61, 02) = p (61, 62) id (5.13)
or equivalently

R21(62, 01) R12(61, 02) = p(61, 02) id (5.14)

where
P01, 02) = (212014Cot + S14521)(C1-Co— + Z1551-52-)
X (213 C14Cat + S1452¢)(C1-Co— + 21281 52). (5.15)

Now we show that the Sutherland equation (4.30) is derived from the Yang—Baxter relation.
We note

Ln,a(g) = Ra,n(ea 0) (516)
By differentiating the Yang—Baxter relation (5.11) with respect4tat 6, = 0, we obtain

d
——Ry,(61, 02) . 0L2,1(91) + L, 1(61)L21(01)H, 2
=

do,
d
= H, 2L,1(01)L21(01) + Ly,1(01) - R12(61, 02) (5.17)
dba 6,=0
Writing 1 — a,n > n+ 1,2 — n,0; — 0,6, — 6 in (5.17), we have
d ~ d ~
[Hn+1,na Ln+l,a(9)Ln,a (9)] = 7~Ra,n+1(9a 9) Ln,a(e) - Ln+l,a(9)7~Ra,n(9’ 9)
do =0 do =0
(5.18)

Comparing (5.18) with (4.30), we see that the operaggr, (9) in the Sutherland equation
(4.30) is given as

01.a(®) = %Rm(e, 0) L (5.19)
6. Lax representation
Consider the operator version of an auxiliary linear problem,

b=t O, (6.1)
Consistency condition for (6.1) yields the Lax equation,

dL, _ M, 1L, — L,M,,. (6.2)

dr
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A model is said to be completely integrable if we can find a Lax péjrand M,, such

that the Lax equation (6.2) is equivalent to the equation of motion of the model. The
explicit forms of the Lax pair for some lattice integrable systems were calculated directly
[42—-44]. On the other hand, lzergin and Korepin [15,45] proved that the Lax equation
follows from the Yang—Baxter relation. Actually, the Lax equation is equivalent to the
Sutherland equation (4.30) [46,47] (see the appendix). The Lax pair is expressed in terms
of the L-operator and th&-matrix as follows:

Ln = Ln,a (9)
M, =1L, 2 (0){Qn.a(©) — [Hyn-1, Lna(©)]}

d
|Ln a(@) { a n(e 9) - [Hn,nfls Ln,a(e)]} . (63)
do =0

Substituting (4.28) and (4.29) into (6.3), we obtain the explicit expression of the Lax operator
M, for the 1D Bariev model,

Mll M12 M13 Ml4
M21 M22 M23 M24

R R oy
M* M2 MB pm#
where
11 S+C— S_
M? = 2 (1+U)+—(1—U)

+
+(1+ t+){(1+ U)o, 0, + A+ Uosi_ Dt 17,7}
+A—-H{@+ Urz)a o0+ A+ Usi Dt 7))

M =tar v+ a- )

+A+){Q+ U)o o, 1+ A+ Usi )T, 47,7}
+1—t){A+Ut)o, 0, 1+ A+ Uoi )t 17, }
mM2=aruy+=a-u
C_ C+
+1+1)A+ U)o, 0, + A= 1)L+ U)o, 0,
+(1+ 1A+ Usi_ Pt gt + A= 1) A+ Uo7,
MBE="C(14+0)+=1-0)
c_ Cy

+1-t)A4+UT )a 0, +(1+t+)(1+UrZ)a 10
+A-r12)A+Uoi Dt 41, + A+1)L+ Usi_)T,) 17,

M,}“:M;‘l:o
MP= 5 fsiei(+U) —sc (1= 1))
+
Mr?z— {s_c.(1=U) —syc (1+U)}
Cc_
MPt=— 5 A+ U - —(1+ Uoi )b,
+

1
M¥? = —c—_(l + Ut — a(1 +Ud? D1, 4
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31 1 ot 1 +

M =—-——A+Uz))o, —— A+ U)o, ;
Cy C_

13 1 - &= -

M?>=—-——A+Ur)o, ——2(1+ U)o, ;
Ct Ct

42 1 o+ G+ +

M =—-—A+Ut)o, — —2(1 - U)o, 4
C_ Cc—

24 1 N — 1 -

M"=—A+Ut))o, ——A—-U)o,_;
C_ C+

43 1 + 1 z +

M =—-——0A-U)r, ——A+Uo; 7,4
Cy C_

34 C+ -1 Ve~
M = —6—2(1 -U)r, — C—(l—i— Uoi T, 4. (6.5)
Here

c+ = co96 £ ) s+ = sin® £ ) te =tan® £ ¥). (6.6)
7. Fermionic formulation

Using the method developed by Olmedita al [21], we can formulate the Yang—Baxter
relation for the 1D Bariev model in a fermionic fashion.
We write the Jordan—Wigner transformation (2.4) in a matrix form,

] ]
("'f>:v2 (&) <’"+):v2 (). (7.0)
o, "\ ey T, "\ e
Unt 0
Yot =< 0 1)
Ut

ntUnt'ntn 0
Vni _ (U ¢u 7~I" v 1 l) (72)
0 (Unj*unTrner)

Here

with the definitions

n—1
Uns = eXp{'Z Z(nks - 1)} Ups = eXp{iZ(nns - 1)}

k=1
P N
ry = exp{lz kZ (ny — 1)}. (7.3)
=n+1
We introduce the matri¥/,, as
V., = VnT ® Vni (74)
which has the relation
Vn+l = Vn(UnT by Unl) (75)
with
u,s, 0O
Uns = 0 -1 N =Tv J/ . (76)

The fermionicL, operator is obtained from thie, operator through the gauge transformation
£l‘l,£l (9) = Vn-‘ran,a(e)Vn_l‘ (77)
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Explicitly,
—fur @) [u,(0) =iy O)cay  icup fuy (0) iCatCny
—ifi O], fir@)gn©)  curc) iCor @y (0)
L@ =| ! . " (7.8)
C,,Tfnl(e) CutCny gnT(H)fni(Q) gnT(e)CnL
—ichrel 8@ (GO, —Zur (©)Z.,©O)

where withs =1 or |

Jus (@) = SINO + ) — {SINO + ) —icoO + ¥)}n,
Fas(©) = sin@ — ¥) — {SIN® — ¥) — icOSO — ¥)}n,
gns(0) = c0S6 + ) — {CoSO + ) +isin@ + ¥)in,.,
&ns(0) = cog0 — ) — {cogO — ) +isin@ — ¥)in,.. (7.9)

The fermionicR-matrix is defined by the graded Yang—Baxter relation,
R12(01, 02)[ L1 (01)®5 L1 (62)] = [L1(02)®5 L (01)]R12(61, 62) (7.10)
where®, means the Grassmann direct product

[A®XB],0;/,[3§ — (_1)[P(p)+P(ﬁ)]P(y)ApﬁBy8
P(l)= P4 =0 P2 =P3 =1 (7.11)

The fermionicR-matrix is derived from theR-matrix. Substituting the expression (7.7)
into (5.1), we have

R12(01, 02)[(V, 5 La (0D Vi) @ (V, L4 (02)Vi)]
= [(V, AL0(02) Vi) ® (V4 Lo (00) V)] Ri2(01, 65). (7.12)
With the diagonal matrix
W =diag, 1, —i, —i, —i, —i, 1,1, =1, =1,i,i,i,i, =1, —1) (7.13)
we can rewrite equation (7.12) as
R12(01, 02)[V, 1 ® V, 51W (L, (0)®,L, (02) W[V, @ V,]
= [V, 2 ® VW HL (02 L, (01)) W[V, ® Va] R (B, 62). (7.14)

In the derivation of (7.14) the following relations are useful:

1 1

Cp,sUn,s = Cf’l,SMyZS = Cp,s Up sCns = _u,zxcn,s - _icn,s
1 1 -1 .
un,scl];,s = u”vé‘clﬁs = Cjt.s Cjt,sun,s = _Cl,sun,s = lcl];,.f' (715)
Since the relations
Raa(61, 62) = (V; ® V}) Raa(01, ) (V,H @ Vi) (7.16)

hold for j = n and j = n + 1, the fermionicR-matrix is obtained as

Ra2(01, 62) = W R12(61, 6) W (7.17)
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or explicitly
a; O 0 0O 00O O O O O o0oO0 o 0 0 q
0 os 0 0 w10 O 0 O 0O 0 0 O 0 0 O
0 0 0O 0 0 O Oy 0 O O O 0 0 O
0 O 0O a4 O O—izg O O g5 O O —apg O 0 O
0 —ia1p O 0 ag 0 O 0 O 0O 0 0 O 0 0 O
0 O 0 0 Oay O 0 O 0O 0 0 O 0 0 O
0 O O w7 0 0 g O O —a190 O —izg O 0 O
0 O 0 0 0 0 O w7 O 0 0 0 0O -y O O
0 0 —iezp O 0 O O 0Oas O O O O 0 0 O
0 O 0 —ixie 0 0 -9 O O g O O s O 0 O
0 O 0 0O 0 0 O 0 O Oa O O 0 0 O
0 O 0 0O 0 0 O 0 O 0 Oag O 0 —ias O
0 O 0 —app 0 0 g7 0O 0O —iag0 0 a4 0 0 O
0 O 0 0O 0 0O O é3 O 0O 0 0 O o«ag 0O O
0 O 0 0O 0 0 O 0 0 0O Odiz O 0 a7 O
0 O 0 0O 0 0 O 0 0 0O 0 0 O 0 0 as

The monodromy matrixZ (¢) is defined by
TO) =Lyna®) ... L140) =[] Lra(®. (7.18)
n=1

From the local graded Yang—Baxter relation (7.10), we have the global graded Yang—Baxter
relation for7 (9)

R12(01, 02)[T (01)®T (02)] = [T (62)®,T (01)] R12(61, 02). (7.19)
The transfer matrix is defined by the supertrace of the monodromy matrix,
T(0) =strT(®) =tr{(6° ® c5)T(9)}. (7.20)

From the global graded Yang—Baxter relation (7.19), we obtain the commutativity of the
transfer matrices

[T@®), T@®)] =0. (7.21)

8. Concluding remarks

In this paper, we have studied the exact integrability of the 1D Bariev model in the
framework of the QISM. We have found the higher conserved currents, which enables
us to assume the form of thie-operator. We have also found the correspond@amatrix.

The R-matrix does not have the ‘difference property’ (3.3) for the spectral parameter. This
is consistent with the fact that the Hamiltonian density of the 1D Bariev model does not
satisfy the Reshetikhin’s criterion. We conjecture that thenatrix (5.4) is a solution of

the Yang—Baxter equation

R12(01, 62) R13(01, 03) R23(62, 63) = Ro3(62, 63) R13(01, 03) R12(61, 62)  (8.1)
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under the constraint
sin2y;  sin2yp,  sSin2y3 U
sin®; sind, sind;
Indeed we have confirmed some non-trivial matrix elements of the Yang-Baxter
equation (8.1). The Yang—Baxter equation (8.1) implies that a more general inhomogeneous
model is integrable with a transfer matrix

(8.2)

T©O,{0,1) = tta [ [ Ran (6. 6,) (8.3)

such that
[T®,16,),TO,16,)] =0 (8.4)

where the parametefs,} are arbitrary constants.

The constraint (8.2) is very similar to the one under which thenatrix of the 1D
Hubbard model satisfies the Yang—Baxter equation [23]. Rtraatrix of the 1D Hubbard
model is expressed in a compact form [20, 23]. It is desirable to find a compact expression
for the R-matrix (5.4).

One of the problems which we did not discuss in this paper is the eigenvalues of the
transfer matrix. It may be possible to apply the diagonal-to-diagonal Bethe ansatz method
and obtain the free energy of the corresponding two-layer vertex model [48, 49]. We shall
report this problem elsewhere. The recent approach of the algebraic Bethe ansatz for the
1D Hubbard model [24] may also be applied to the present model.

More recently, the 1D Bariev model was generalized to a two-parameter correlated
hopping model [29]. This model is also solvable by the coordinate Bethe ansatz and contains
several other models as special cases [29]. It is shown that the undeRiyimatrix comes
from the four-dimensional representation of the quantum superalgéfrg (2|1)) [50].
Surprisingly, thisR-matrix has a spectral parameter which satisfies the ‘difference property’
(3.3). This fact seems to be contradictory to our result. However, in their argument
[50], the 1D Bariev model corresponds to the extreme case where a free-parameter in
the representation o/, (g/(2|1)) diverges, and it is not straightforward to reproduce the
R-matrix of the 1D Bariev model. We shall try to clarify these relationships in the future.

Finally, we would like to mention a different approach to the integrability of the 1D
Bariev model, based on the representation of the affine Hecke algebra [51]. It is shown that
the 1D Bariev model becomes tligfunction interacting fermions in the continuum limit.
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Appendix. Lax equation from the Sutherland equation (4.30)

From (4.30), we can derive the following two relations:
[Hut1n Lna@)] = =0a(®) + Ly ,(0) Qui1,a(0) Ly o(6)
—L 1 O [Hys1n Lis1,a@)]Lya(0) (A1)
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[Hin-1. Lua@] = Qn.a(®) — Lua(®) Qu-1a0)L; ", ,(6)

~LaO[Hyn-1, Lu—1.@]IL Y ,(0). (A.2)

n—1,a

Then the time evolution of thé-operator becomes

d
—L

dr

na(©) =i[H, Ly ,(0)]
= [ Hut1 LnaO)] +i[Hy o1, Lo ()]
=il 11 O{Qn+14(®) = [Hut1ns Lut1.a] Lna(®)
—iLya0){Qn-1.4(0) + [Hyn-1, Lu-1.]}L; % ,(6). (A.3)

Again from (4.30), the following relation holds:

L;j (9){Qn,a(9) - [Hn,n—l’ Lnu(e)]} = {Qn—l,a (9) + [Hn,n—l’ Ln—la(e)]}L,:Ej_’a(G) (A4)
Thus equation (A.3) is cast into the form of the Lax equation (6.2),

d

&Ln,a(e) = Mn+l,a (Q)Ln,a(e) - Ln,a(e)Mn,a (9) (A5)
where

My (0) =1L, 2 (0){Qn.a(0) — [Hyn-1. Lna @]} (A.6)
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