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Abstract. We investigate the exact integrability of the one-dimensional (1D) Bariev model
in the framework of the quantum inverse scattering method (QISM). Using the Jordan–Wigner
transformation, the 1D Bariev model can be regarded as a coupled spin model. We construct
the higher conserved currents which commute with the Hamiltonian. The explicit form of the
conserved currents helps us to infer theL-operator of the 1D Bariev model. From theL-operator,
we construct a transfer matrix which is a generating function of the conserved currents. We
also find the correspondingR-matrix which satisfies the Yang–Baxter relation. Thus the exact
integrability of the 1D Bariev model is established. TheR-matrix does not have the ‘difference
property’ for the spectral parameter, as in the case of the 1D Hubbard model. We also provide
the Lax representation and the fermionic formulation of the Yang–Baxter relation.

1. Introduction

Recently, there has been much interest in the strongly correlated electron systems in relation
to high-Tc superconductivity. Several models have been proposed. Among them, some are
known to be exactly solvable in one dimension by the coordinate Bethe ansatz [1–4]. The
one-dimensional (1D) Hubbard model and the supersymmetric t-J model are the most famous
ones and have been investigated quite rigorously. Based on the Bethe ansatz equation, we
can extract many physical properties of the models (see the reprint volume [5]). For example,
it is possible to obtain the low-energy gapless excitation spectrum around the ground state
by the finite-size scaling method [6, 7]. It exhibits the universal long-distance properties
of these models which are characterized as a Tomonaga– Luttinger liquid. The critical
exponents of the correlation functions can also be evaluated by use of the predictions of
conformal field theory (CFT) [8–10].

On the other hand, the quantum inverse scattering method (QISM) is the most powerful
method to treat the 1D exactly solvable models [11–15]. The QISM allows us to show the
existence of an infinite number of conserved currents and the diagonalization of the transfer
matrix. It is also possible to derive the explicit expressions for the correlation functions
if we can apply the algebraic Bethe ansatz [15]. With this approach, we can say that the
critical exponents of the correlation functions depend only on the underlyingR-matrix which
satisfies the Yang–Baxter equation [15]. Thus it is desirable to investigate the 1D exactly
solvable models from the point of view of the QISM.

For the supersymmetric t-J model, the QISM has been successfully applied. The higher
conservation laws are established, and the transfer matrix is diagonalized by means of
the algebraic Bethe ansatz [16, 17]. For the 1D Hubbard model, the situation is not so
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conclusive. The machinary of the QISM was only partially applied. Shastry introduced the
Jordan–Wigner transformation to change the model into the coupledXY model and found
some non-trivial higher conserved currents [18]. From the form of the higher conserved
currents, the corresponding two-dimensional (2D) classical statistical model was inferred
[18]. The integrability of the model was proved by showing the Yang–Baxter relation,
which assures the existence of an infinite number of conserved currents [19–22]. However,
because of the complexity of theR-matrix, the diagonalization of the transfer matrix is
a very difficult problem [20]. The spectral parameter of theR-matrix does not have the
‘difference property’ (3.3) (see later), which makes, for example, the conservation laws very
complicated. In this sense, the 1D Hubbard model has been considered as an exceptional
model among the exactly solvable models. We note that the algebraic Bethe ansatz used
to obtain the eigenvalues of the transfer matrix has recently been reported by Ramos and
Martins [24].

Another type of 1D highly correlated electron system was proposed and solved by
Bariev (1D Bariev model) [3]. The Hamiltonian does not have a Coulomb interaction term,
but has the bond-charge interaction which makes the hopping of the electrons correlated. It
resembles the Hirsch’s hole superconductivity model [24, 25]. The spin excitations of the
1D Bariev model have a gap and only the charge excitations are gapless. From the finite-
size scaling analysis, it was shown that the 1D Bariev model in the attractive case actually
has a tendency of the superconductivity [25]. That is, there is a region where the correlation
of the superconducting singlet pairs is dominant over the density–density correlation [25].
For the above reasons, the 1D Bariev model and its related models have attracted much
attention [27–29].

The 1D Bariev model can also be regarded as the coupledXY model by means of the
Jordan–Wigner transformation, which allow us to put the model in the framework of the
QISM. As a coupled spin model, the 1D Bariev model is nothing but a linear combination
of the two non-interactiveXY models and the generalizedXY model [30].

The aim of this paper is to investigate the 1D Bariev model in the framework of the
QISM. Since the 1D Bariev model has an interpretation of the coupledXY model, we can
apply the method developed in the case of the 1D Hubbard model. This approach for the
1D Bariev model was studied by Zhou to some extent [31]. We first discuss the higher
conserved currents of the 1D Bariev model in detail. From the explicit form of the higher
conserved currents, we can assume theL-operator and the transfer matrix. We propose a
differentL-operator from Zhou’s. We have also found the correspondingR-matrix, which
fulfills the Yang–Baxter relation. Thus the exact integrability of the 1D Bariev model is
established. The obtainedR-matrix enjoys some properties in common with theR-matrix for
the 1D Hubbard model. In particular, theR-matrix does not have the ‘difference property’
(3.3) for the spectral parameter. Moreover, the constraints among the spectral parameters
take a very similar form to the 1D Hubbard model. Our results may provide a basis for the
further study of the 1D Bariev model.

The outline of this paper is as follows. In section 2, we introduce the 1D Bariev model
and its equivalent spin model. In section 3, we first discuss a peculiarity of the Hamiltonian
which prevents the recursive construction of the higher conserved currents. Then we adopt
a more direct method to find the higher conserved currents. In section 4, we propose a new
L-operator. The commutativity of the transfer matrix and the Hamiltonian is proved by
means of the Sutherland equation. In section 5, we solve the Yang–Baxter relation to obtain
the explicit expression of theR-matrix. We also discuss some fundamental properties of the
R-matrix. In section 6, we present the Lax representation of the 1D Bariev model which
follows from the Yang–Baxter relation. In section 7, we formulate the Yang–Baxter relation
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in a fermionic fashion, by use of the Jordan–Wigner transformation. The last section is
devoted to concluding remarks. The Yang–Baxter equation for theR-matrix is conjectured.

2. The 1D Bariev model

Let c†ns and cns denote fermionic creation and annihilation operators with spinss(↑ or ↓)
at siten (n = 1, 2, . . . , N). They satisfy the anti-commutation relations

{cns, cn′s ′ } = {c†ns, c†n′s ′ } = 0 {c†ns, cn′s ′ } = δnn′δss ′ . (2.1)

The Hamiltonian of the 1D Bariev model [3] is

HBariev= −
∑
n

[(c†n+1↑cn↑ + c†n↑cn+1↑) exp(ηnn+1↓)+ (c†n↓cn+1↓ + c†n+1↓cn↓) exp(ηnn↑)]

(2.2)

whereη is the coupling constant describing the correlated hopping andnns is the number
density operator

nns = c†nscns . (2.3)

We introduce the Jordan–Wigner transformation which connects the fermion operators
and the spin operators,

cn↑ = exp

(
iπ

n−1∑
l=1

(nl↑ − 1)

)
σ−n

cn↓ = exp

(
iπ

n−1∑
l=1

(nl↓ − 1)

)
exp

(
iπ

N∑
l=1

(nl↑ − 1)

)
τ−n . (2.4)

Hereσ andτ are two species of the Pauli matrices and commute each other. Applying the
Jordan–Wigner transformation (2.4) to the Hamiltonian (2.2), and multiplying an overall
factor, we obtain the following coupled spin model,

H =
∑
n

Hn+1,n =
∑
n

[(σ+n σ
−
n+1+ σ−n σ+n+1)(1+ Uτzn+1)+ (τ+n τ−n+1+ τ−n τ+n+1)(1+ Uσzn)]

(2.5)

where

U = tanh
η

2
. (2.6)

3. Conserved currents

We investigate the exact integrability of the 1D Bariev model. It is a starting point to
look for the higher conserved currents, which commute with the Hamiltonian. One readily
verifies that the Hamiltonian densityHn+1,n does not satisfy the so-called Reshetikhin’s
criterion [13] unlessU = 0, or∞. That is, ifU is a non-zero finite constant, the double
commutator

[H12+H23, [H12, H23]] (3.1)

cannot be expressed as

X12−X23 (3.2)
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whereXij is an operator which depends only on the spacei and j . The Reshetikhin’s
criterion follows from the assumption that theR-matrix of the model has the ‘difference
property’ for the spectral parameter,

Ř(u, v) = Ř(u− v). (3.3)

This fact implies that theR-matrix for the 1D Bariev model does not have the ‘difference
property’ (3.3) as in the case of the 1D Hubbard model. If theR-matrix has the ‘difference
property’ and the Reshetikhin’s criterion is satisfied, the higher conserved currents are
recursively produced by taking the commutator with the boost operator [32, 33],

I (n+1) = [B, I (n)]. (3.4)

Here

B =
∑
n

nHn+1,n (3.5)

and I (n) is thenth conserved current derived by the logarithmic derivative of the transfer
matrix. Since the Hamiltonian density of the Bariev model does not satisfy the Reshetikhin’s
criterion, we should resort to a more direct method to obtain the higher conserved currents
[20, 34, 35].

The Hamiltonian of the 1D Bariev model can be written as

H = H0+ UH1 (3.6)

where

H0 =
∑
n

(σ+n σ
−
n+1+ σ−n σ+n+1)+ (τ+n τ−n+1+ τ−n τ+n+1)

H1 =
∑
n

(σ+n σ
−
n+1+ σ−n σ+n+1)τ

z
n+1+ σ zn (τ+n τ−n+1+ τ−n τ+n+1).

We note that theH0 (H1) correspond to theU = 0 (U = ∞) limit of the 1D Bariev model.
The HamiltonianH1 is a special case of the generalizedXY model found by Suzuki [30].
Now we choose the form of the higher conserved currents as follows,

J = J0+ UJ1+ U2J2 (3.7)

K = K0+ UK1+ U2K2+ U3K3 (3.8)

where we assume that the currentJ contains at most 3-spin interactions, andK, 4-spin
interactions. The explicit form ofJi is determined by the commutativity with the
Hamiltonian,

[H, J ] = 0 (3.9)

which is equivalent to the following set of equations,

[H0, J0] = [H1, J2] = 0 (3.10)

[H1, J0] + [H0, J1] = 0 (3.11)

[H0, J2] + [H1, J1] = 0. (3.12)

Since the Reshetikhin’s criterion is satisfied in the casesU = 0 andU = ∞, the explicit
forms of J0 andJ2 are calculated by using the boost operator approach,

J0 =
∑
n

[(σ+n−1σ
z
nσ
−
n+1− σ−n−1σ

z
nσ
+
n+1)+ (τ+n−1τ

z
nτ
−
n+1− τ−n−1τ

z
nτ
+
n+1)]

J2 =
∑
n

[
(σ+n−1σ

z
nσ
−
n+1− σ−n−1σ

z
nσ
+
n+1)τ

z
nτ

z
n+1+ σ zn−1σ

z
n (τ
+
n−1τ

z
nτ
−
n+1− τ−n−1τ

z
nτ
+
n+1)]. (3.13)
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SubstitutingJ0 andJ2 into (3.11) and (3.12), we find

J1 =
∑
n

[(σ+n−1σ
z
nσ
−
n+1− σ−n−1σ

z
nσ
+
n+1)(τ

z
n + τ zn+1)+ (σ zn−1+ σ zn )(τ+n−1τ

z
nτ
−
n+1− τ−n−1τ

z
nτ
+
n+1)

+4(σ−n−1σ
+
n τ
−
n τ
+
n+1− σ+n−1σ

−
n τ
+
n τ
−
n+1)

+4(σ−n σ
+
n+1τ

−
n τ
+
n+1− σ+n σ−n+1τ

+
n τ
−
n+1)] (3.14)

which was first found by Zhou [31]. Similarly, we can construct the conserved currentK.
This time the condition

[H,K] = 0 (3.15)

is equivalent to

[H0,K0] = [H1,K3] = 0 (3.16)

[H1,K0] + [H0,K1] = 0 (3.17)

[H1,K1] + [H0,K2] = 0 (3.18)

[H1,K2] + [H0,K3] = 0. (3.19)

The result is as follows,

K0 =
∑
n

[(σ+n−1σ
z
nσ

z
n+1σ

−
n+2+ σ−n−1σ

z
nσ

z
n+1σ

+
n+2)+ (τ+n−1τ

z
nτ

z
n+1τ

−
n+2+ τ−n−1τ

z
nτ

z
n+1τ

+
n+2)]

(3.20)

K1 =
∑
n

[(σ+n−1σ
z
nσ

z
n+1σ

−
n+2+ σ−n−1σ

z
nσ

z
n+1σ

+
n+2)(τ

z
n + τ zn+1+ τ zn+2)

+(σ zn−1+ σ zn + σ zn+1)(τ
+
n−1τ

z
nτ

z
n+1τ

−
n+2+ τ−n−1τ

z
nτ

z
n+1τ

+
n+2)

−4{σ+n−1σ
z
nσ
−
n+1(τ

+
n−1τ

−
n + τ+n τ−n+1+ τ+n+1τ

+
n+2)

+σ−n−1σ
z
nσ
+
n+1(τ

−
n−1τ

+
n + τ−n τ+n+1+ τ−n+1τ

+
n+2)

+(σ+n−1σ
−
n + σ+n σ−n+1+ σ+n+1σ

−
n+2)τ

+
n τ

z
n+1τ

−
n+2

+(σ−n−1σ
+
n + σ−n σ+n+1+ σ−n+1σ

+
n+2)τ

−
n τ

z
n+1τ

+
n+2}] (3.21)

K2 =
∑
n

[(σ+n−1σ
z
nσ

z
n+1σ

−
n+2+ σ−n−1σ

z
nσ

z
n+1σ

+
n+2)(τ

z
nτ

z
n+1+ τ zn+1τ

z
n+2+ τ znτ zn+2)

+(σ zn−1σ
z
n + σ znσ zn+1+ σ zn−1σ

z
n+1)(τ

+
n−1τ

z
nτ

z
n+1τ

−
n+2+ τ−n−1τ

z
nτ

z
n+1τ

+
n+2)

−4(σ+n−1σ
z
nσ
−
n+1τ

+
n−1τ

−
n τ

z
n+1+ σ−n−1σ

z
nσ
+
n+1τ

−
n−1τ

+
n τ

z
n+1

+σ zn−1σ
+
n σ
−
n+1τ

+
n−1τ

z
nτ
−
n+1+ σ zn−1σ

−
n σ
+
n+1τ

−
n−1τ

z
nτ
+
n+1

+σ+n−1σ
−
n σ

z
n+1τ

+
n τ

z
n+1τ

−
n+2+ σ−n−1σ

+
n σ

z
n+1τ

−
n τ

z
n+1τ

+
n+2

+σ+n−1σ
z
nσ
−
n+1τ

z
nτ
+
n+1τ

−
n+2+ σ−n−1σ

z
nσ
+
n+1τ

z
nτ
−
n+1τ

+
n+2)

+4(σ+n−1σ
−
n τ
+
n−1τ

−
n+1+ σ−n−1σ

+
n τ
−
n−1τ

+
n+1

+σ+n−1σ
−
n+1τ

+
n τ
−
n+1+ σ−n−1σ

+
n+1τ

−
n τ
+
n+1)]

K3 =
∑
n

[(σ+n−1σ
z
nσ

z
n+1σ

−
n+2+ σ−n−1σ

z
nσ

z
n+1σ

+
n+2)τ

z
nτ

z
n+1τ

z
n+2

+σ zn−1σ
z
nσ

z
n+1(τ

+
n−1τ

z
nτ

z
n+1τ

−
n+2+ τ−n−1τ

z
nτ

z
n+1τ

+
n+2)]. (3.22)

The conserved currents are supposed to be involutive. In fact, we have verified that

[J,K] = 0 (3.23)

which now is equivalent to

[J0,K0] = [J2,K3] = 0 (3.24)

[J0,K1] + [J1,K0] = 0 (3.25)

[J0,K2] + [J1,K1] + [J2,K0] = 0 (3.26)
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[J0,K3] + [J1,K2] + [J2,K1] = 0 (3.27)

[J1,K3] + [J2,K2] = 0. (3.28)

4. L-operator

In this section, we discuss theL-operator and the transfer matrix for the 1D Bariev model.
The transfer matrix is written in the standard form,

T (u) = tra
←∏
n

Ln,a(u) = tra[LN,a(u)LN−1,a(u) . . . L1,a(u)] (4.1)

wherea is the auxiliary variable corresponding to the horizontal arrows in the row-to-row
transfer matrix. We want to find a set of transfer matrices with a different value of the
spectral parameter which commute mutually,

[T (u), T (v)] = 0. (4.2)

Usually, the commutativity of the transfer matrix is guaranteed by the existence of the
R-matrix which satisfies the (local) Yang–Baxter relation [11–15, 36],

Ř12(u, v)[Ln(u)⊗ Ln(v)] = [Ln(v)⊗ Ln(u)]Ř12(u, v). (4.3)

First, we discuss the two special cases (U = 0,∞). In these cases, the Yang–Baxter
structures are already known.

(1) U = 0. The Hamiltonian decouples into the two non-interactiveXY models, and
theL-operator is

L(U=0)
n,a (θ) = L(σ)n,a(θ)L(τ)n,a(θ) (4.4)

where

L(σ)n,a(θ) = 1
2 cosθ(1+ σ znσ za )+ 1

2 sinθ(1− σ znσ za )+ (σ+n σ−a + σ+a σ−n )
L(τ)n,a(θ) = 1

2 cosθ(1+ τ znτ za )+ 1
2 sinθ(1− τ znτ za )+ (τ+n τ−a + τ+a τ−n ). (4.5)

Correspondingly, theR-matrix is given by

Ř
(U=0)
12 (θ1− θ2) = Ř(σ )12 (θ1− θ2)Ř

(τ)

12 (θ1− θ2) (4.6)

where

Ř
(σ )

12 (θ1− θ2) = 1
2 cos(θ1− θ2)(1+ σ z1σ z2)+ sin(θ1− θ2)(σ

+
1 σ
−
2 + σ+1 σ−2 )+ 1

2(1− σ z1σ z2)
Ř
(τ)

12 (θ1− θ2) = 1
2 cos(θ1− θ2)(1+ τ z1τ z2)+ sin(θ1− θ2)(τ

+
1 τ
−
2 + τ+1 τ−2 )+ 1

2(1− τ z1τ z2).
(4.7)

(2)U = ∞. As noted in section 3, the 1D Bariev model reduces to Suzuki’s generalized
XY model [30] in theU = ∞ limit, and the Yang–Baxter relation for this model was found
by Lopez [37]. TheL-operator is

L(U=∞)n,a (ψ) = { 12 cosψ(1+ σ znσ za )+ 1
2 sinψ(1− σ znσ za )τ za + (σ+n σ−a + σ+a σ−n )}

×{ 12 cosψ(1+ τ znτ za )+ 1
2 sinψ(1− τ znτ za )σ za + (τ+n τ−a + τ+a τ−n )}. (4.8)

The correspondingR-matrix is given by

Ř
(U=∞)
12 (ψ1− ψ2) = F12{Ř(σ )12 (ψ1− ψ2)Ř

(τ)

12 (ψ1− ψ2)}F−1
12 (4.9)

where

F12 ≡ 1
2(1+ σ z1 + τ z2 − σ z1τ z2). (4.10)
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We note some useful relations for the operatorF12,

F 2
12 = 1

F12{(σ+1 σ−2 + σ−1 σ+2 )+ (τ+1 τ−2 + τ−1 τ+2 )}F−1
12 = (σ+1 σ−2 + σ−1 σ+2 )τ z2 + σ z1(τ+1 τ−2 + τ−1 τ+2 ).

(4.11)

TheR matrix (4.9) is related to the trigonometric limit of the quantum Clifford–Hopf algebra
CHq(4) [37].

Now we look for theL-operator for generalU . We assume that theL-operator has the
following expansion in powers of the spectral parameteru,

Ln,a(u) = Pn,a
(

1+ uHn,a + u
2

2!
Bn,a + u

3

3!
Cn,a + · · ·

)
(4.12)

wherePn,a is the permutation operator. Lüscher [38] has shown that, if the transfer matrix
consists of theL-operator (4.1) and the transfer matrices commute mutually, then thenth
logarithmic derivative of the transfer matrix,

I (n) ≡ dn

dun
ln(T −1(0)T (u))

∣∣∣
u=0

(4.13)

is the local conserved currents in involution,

[I (n), I (m)] = 0. (4.14)

Here the termlocal means thatI (n) contains at mostn+ 1 spin interactions. Using the
expansion of theL-operator (4.12), the explicit forms of the conserved currents are, for
instance, given as [20, 39],

I (1) =
∑
n

Hn,n−1 (4.15)

I (2) =
∑
n

(Bn,n−1−H 2
n,n−1)+

∑
n

[Hn+1,n, Hn,n−1] (4.16)

I (3) =
∑
n

(Cn,n−1−H 3
n,n−1)

−3

2

∑
n

{Hn,n−1(Bn,n−1−H 2
n,n−1)+ (Bn,n−1−H 2

n,n−1)Hn,n−1}

+3

2

∑
n

{[Hn+1,n, Bn,n−1−H 2
n,n−1] + [Bn+1,n −H 2

n+1,n, Hn,n−1]}

+1

2

∑
n

{[Hn+1,n, [Hn+1,n, Hn,n−1]] + [[Hn+1,n, Hn,n−1], Hn,n−1]}

+2
∑
n

[[Hn+1,n, Hn,n−1], Hn−1,n−2]. (4.17)

In general, the conserved currents are not determined uniquely, since we can add any lower
conserved currents to redefine the higher one. However, if we assume

H = I (1) J = I (2) K = 1
2I

(3) (4.18)

then we can determine the higher terms in (4.12) as follows:

Bn,n−1 = 1
2(1− σ zn−1σ

z
n )(1+ Uτzn)2+ 1

2(1− τ zn−1τ
z
n)(1+ Uσzn−1)

2

+2(σ+n−1σ
−
n + σ−n−1σ

+
n )(1+ Uσzn−1)(1+ Uτzn)(τ+n−1τ

−
n + τ−n−1τ

+
n )

Cn,n−1 = 3
2(σ
+
n−1σ

−
n + σ−n−1σ

+
n )(1+ Uσzn−1)

2(1+ Uτn)(1− τ zn−1τ
z
n)

+ 3
2(τ
+
n−1τ

−
n + τ−n−1τ

+
n )(1+ Uσzn−1)(1+ Uτn)2(1− τ zn−1τ

z
n). (4.19)
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Based on these results, Zhou [31] found aL-operator for the 1D Bariev model,

Ln,a(u) = L′n,a(u)L′′n,a(u) (4.20)

where

L′n,a(u) = 1
2(1+ σ znσ za )+ 1

2(1− σ znσ za )(1+ Uτza )u+ (σ+n σ−a + σ−n σ+a )
√

1+ (1+ Uτza )2u2

L′′n,a(u) = 1
2(1+ τ znτ za )+ 1

2(1+ Uσza )(1− τ znτ za )u+
√

1+ (1+ Uσza )2u2(τ+n τ
−
a + τ−n τ+a ).

(4.21)

The correspondingR-matrix, which satisfies the Yang–Baxter relation

Ř(u, v)[Ln(u)⊗ Ln(v)] = [Ln(v)⊗ Ln(v)]Ř(u, v) (4.22)

was also found [31].
There are some disadvantages about theL-operator (4.21).
(1) TheL-operator (4.21) does not reduce to (4.4) and (4.8) if we take the limitsU = 0

andU = ∞, respectively. The correspondingR-matrix is not useful when we discuss the
difference property (3.3).

(2) It is not easy to formulate the Yang–Baxter relation in a fermionic fashion using the
L-operator (4.21).

We shall, therefore, look for anotherL-operator for the 1D Bariev model which includes
(4.4) and (4.8) as special cases. First, we assume theL-operator as

Ln,a = L(1)n,aL(2)n,a (4.23)

where

L(1)n,a = 1
2 cos(θ + ψτza )(1+ σ znσ za )+ 1

2 sin(θ + ψτza )(1− σ znσ za )+ (σ+n σ−a + σ−n σ+a )
L(2)n,a = 1

2 cos(θ + ψσza )(1+ τ znτ za )+ 1
2 sin(θ + ψσza )(1− τ znτ za )+ (τ+n τ−a + τ−n τ+a ). (4.24)

Here θ andψ are assumed to be spectral parameters. However, as we will see shortly,θ

andψ are not independent. Next, we consider the following relation,

[Hn+1,n, Ln+1,aLn,a] = Qn+1,aLn,a − Ln+1,aQn,a (4.25)

whereHn+1,n is the Hamiltonian density andQn,a is some operator. This kind of equation
was used to show the commutativity of the 1D quantum spin Hamiltonians and the transfer
matrix of the 2D classical vertex models [40, 41, 18]. In fact, if there exists an operator
which satisfies (4.25), then the transfer matrix constructed from theL-operator commutes
with the Hamiltonian. We call equation (4.25) the Sutherland equation [14]. We assume
the operatorQn,a in the form

Qn,a =


Q11
n Q12

n τ
−
n Q13

n σ
−
n Q14

n σ
−
n τ
−
n

Q21
n τ
+
n Q22

n Q23
n σ
−
n τ
+
n Q24

n σ
−
n

Q31
n σ
+
n Q32

n σ
+
n τ
−
n Q33

n Q34
n τ
−
n

Q41
n σ
+
n τ
+
n Q42

n σ
+
n Q43

n τ
+
n Q44

n

 (4.26)

whereQij
n , (i, j = 1, . . . ,4) are the operators which depend onσ zn and τ zn . Substituting

(4.26) into the Sutherland equation (4.25) we find a constraint betweenθ andψ :

sin 2ψ

sin 2θ
= U. (4.27)
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Recall thatU is the coupling constant of the 1D Bariev model. Under the constraint (4.27),
we can obtainQij

n ,

Q11
n = 1

2(sin 2θ + U sin 2ψ)(σ zn + τ zn)− 1
2(cos 2θ + U cos 2ψ)(1− σ znτ zn)

Q22
n = − 1

2 cos 2θ cos 2ψ(1+ σ znτ zn + U(σ zn + τ zn))+ 1
2 sin 2θ cos 2ψ(σ zn − τ zn)

+ 1
2U sin 2ψ cos 2θ(1− σ znτ zn)

Q33
n = − 1

2 cos 2θ cos 2ψ(1+ σ znτ zn + U(σ zn + τ zn))+ 1
2 sin 2θ cos 2ψ(σ zn − τ zn)

+ 1
2U sin 2ψ cos 2θ(1− σ znτ zn)

Q44
n = − 1

2(sin 2θ + U sin 2ψ)(σ zn + τ zn)− 1
2(cos 2θ − U cos 2ψ)(1− σ znτ zn)

Q12
n = 1

2(1− U) sin(θ − ψ)(1+ σ zn )− 1
2(1+ U) cos(θ − ψ)(1− σ zn )

Q31
n = 1

2(1− U) sin(θ − ψ)(1+ τ zn)+ 1
2(1+ U) cos(θ − ψ)(1− τ zn)

Q43
n = − 1

2(1− U) cos(θ + ψ)(1+ σ zn )+ 1
2(1+ U) sin(θ + ψ)(1− σ zn )

Q24
n = − 1

2(1− U) cos(θ + ψ)(1+ τ zn)+ 1
2(1+ U) sin(θ + ψ)(1− τ zn)

Q21
n = 1

2(cos 2ψ − U cos 2θ)(sin(θ − ψ)(1+ σ zn )− cos(θ − ψ)(1− σ zn ))
Q13
n = 1

2(cos 2ψ − U cos 2θ)(sin(θ − ψ)(1+ τ zn)− cos(θ − ψ)(1− τ zn))
Q34
n = 1

2(cos 2ψ + U cos 2θ)(− cos(θ + ψ)(1+ σ zn )+ sin(θ + ψ)(1− σ zn ))
Q42
n = 1

2(cos 2ψ + U cos 2θ)(− cos(θ + ψ)(1+ τ zn)+ sin(θ + ψ)(1− τ zn))
Q32
n = −Q23

n = 2 sin 2ψ

Q14
n = Q41

n = 0. (4.28)

Thus we obtain a newL-operator for the 1D Bariev model,

Ln,a(θ) = { 12 cos(θ + ψτza )(1+ σ znσ za )+ 1
2 sin(θ + ψτza )(1− σ znσ za )+ (σ+n σ−a + σ−n σ+a )}

×{ 12 cos(θ + ψσza )(1+ τ znτ za )+ 1
2 sin(θ + ψσza )(1− τ znτ za )+(τ+n τ−a + τ−n τ+a )}

=


p+n (θ)q

+
n (θ) p+n (θ)τ

−
n σ−n q̃

+
n (θ) σ−n τ

−
n

p̃+n (θ)τ
+
n p̃+n (θ)q

−
n (θ) σ−n τ

+
n σ−n q̃

−
n (θ)

σ+n q
+
n (θ) σ+n τ

−
n p−n (θ)q̃

+
n (θ) p−n (θ)τ

−
n

σ+n τ
+
n σ+n q

−
n (θ) p̃−n (θ)τ

+
n p̃−n (θ)q̃

−
n (θ)

 (4.29)

where

p±n (θ) = 1
2(cos(θ + ψ)+ sin(θ + ψ))± 1

2(cos(θ + ψ)− sin(θ + ψ))σ zn
p̃±n (θ) = 1

2(cos(θ − ψ)+ sin(θ − ψ))± 1
2(cos(θ − ψ)− sin(θ − ψ))σ zn

q±n (θ) = 1
2(cos(θ + ψ)+ sin(θ + ψ))± 1

2(cos(θ + ψ)− sin(θ + ψ))τ zn
q̃±n (θ) = 1

2(cos(θ − ψ)+ sin(θ − ψ))± 1
2(cos(θ − ψ)− sin(θ − ψ))τ zn .

Here the parameterψ is considered to be a function ofθ through the constraint (4.27).
Then we write the the Sutherland equation (4.25) as

[Hn+1,n, Ln+1,a(θ)Ln,a(θ)] = Qn+1,a(θ)Ln,a(θ)− Ln+1,a(θ)Qn,a(θ). (4.30)

The Hamiltonian (2.5) is the logarithmic derivative of the transfer matrix

H = T (0)−1 d

dθ
T (θ)

∣∣∣
θ=0

(4.31)
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where

T (θ) = tra
←∏
n

Ln,a(θ). (4.32)

5. Yang–Baxter relation

In this section, we discuss the Yang–Baxter relation corresponding to theL-operator (4.29).
We look for a 16× 16 matrix Ř12(θ1, θ2) which satisfies the Yang–Baxter relation

Ř12(θ1, θ2) [Ln(θ1)⊗ Ln(θ2)] = [Ln(θ2)⊗ Ln(θ1)] Ř12(θ1, θ2) (5.1)

under the constraint
sin 2ψ1

sin 2θ1
= sin 2ψ2

sin 2θ2
= U. (5.2)

Following the method proposed by Olmedillaet al [21], the non-zero elements of the
R-matrix, Ř12(θ1, θ2), are assumed to be

Rii for i = 1, 2, . . . ,16

R2,5, R5,2, R3,9, R9,3, R4,7, R7,4, R4,10, R10,4, R4,13R13,4, R8,14, R14,8,

R12,15, R15,12, R10,13, R13,10, R7,13, R13,7, R10,7, R7,10. (5.3)

Using the relations

p±n (θ)σ
±
n = σ±n p∓(θ) = cos(θ + ψ)σ±n

p̃±n (θ)σ
±
n = σ±n p̃∓(θ) = cos(θ − ψ)σ±n

σ±n p
±
n (θ) = p∓n (θ)σ±n = sin(θ + ψ)σ±n

σ±n p̃
±
n (θ) = p̃∓n (θ)σ±n = sin(θ − ψ)σ±n

and the similar relations forτ spins, we can solve (5.1) to find the non-zero elements of
theR-matrix. The result is

Ř12(θ1, θ2) =



α1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 α5 0 0 α11 0 0 0 0 0 0 0 0 0 0 0

0 0 α6 0 0 0 0 0 α11 0 0 0 0 0 0 0

0 0 0 α4 0 0 α18 0 0 α15 0 0 α20 0 0 0

0 α12 0 0 α6 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0

0 0 0 α17 0 0 α9 0 0 α19 0 0 α18 0 0 0

0 0 0 0 0 0 0 α7 0 0 0 0 0 α14 0 0

0 0 α12 0 0 0 0 0 α5 0 0 0 0 0 0 0

0 0 0 α16 0 0 α19 0 0 α10 0 0 α15 0 0 0

0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 α8 0 0 α14 0

0 0 0 α21 0 0 α17 0 0 α16 0 0 α4 0 0 0

0 0 0 0 0 0 0 α13 0 0 0 0 0 α8 0 0

0 0 0 0 0 0 0 0 0 0 0 α13 0 0 α7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0α3


(5.4)
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To describe the non-zero elements of theR-matrix, we introduce the following abbreviations:

ci± = cos(θi ± ψi) si± = sin(θi ± ψi) i = 1, 2 (5.5)

z12 = c1+c2−
c1−c2+

= s1+s2−
s1−s2+

. (5.6)

The second equality forz12 is due to the constraint (5.2). Then, the non-zero elements of
theR-matrix are given by

α1(θ1, θ2) = (z12c1+c2+ + s1+s2+)(c1−c2− + z−1
12 s1−s2−)

α2(θ1, θ2) = (c1+c2+ + z12s1+s2+)(c1−c2− + z−1
12 s1−s2−)

α3(θ1, θ2) = (c1+c2+ + z12s1+s2+)(z−1
12 c1−c2− + s1−s2−)

α4(θ1, θ2) = 1

α5(θ1, θ2) = c1−c2− + z−1
12 s1−s2−

α6(θ1, θ2) = z12c1−c2− + s1−s2−
α7(θ1, θ2) = c1+c2+ + z12s1+s2+
α8(θ1, θ2) = z−1

12 c1+c2+ + s1+s2+
α9(θ1, θ2) = 1+ c1+

c2+

(
s1−
s2−
− c1+
c2+

)
(c2

2+ − c2
2−)

α10(θ1, θ2) = 1+ c1−
c2−

(
s1+
s2+
− c1−
c2−

)
(c2

2− − c2
2+)

α11(θ1, θ2) = (s1+c2+ − z12c1+s2+)(c1−c2− + z−1
12 s1−s2−)

α12(θ1, θ2) = (z12s1+c2+ − c1+s2+)(c1−c2− + z−1
12 s1−s2−)

α13(θ1, θ2) = (s1−c2− − z−1
12 c1−s2−)(c1+c2+ + z12s1+s2+)

α14(θ1, θ2) = (z−1
12 s1−c2− − c1−s2−)(c1+c2+ + z12s1+s2+)

α15(θ1, θ2) = s1−c2+ − c1+s2−

α16(θ1, θ2) = s1−c2+ − s1−c2+
s1+c2−

c1−s2+

α17(θ1, θ2) = s1+c2− − c1−s2+

α18(θ1, θ2) = s1+c2− − s1+c2−
s1−c2+

c1+s2−

α19(θ1, θ2) = (s1+c2− − c1−s2+)(s1−c2+ − c1+s2−)

α20(θ1, θ2) = (s1−c2+ − c1+s2−)
(
s1−c2+ − s1+c2−

s1−c2+
c1−s2+

)
α21(θ1, θ2) = (s1+c2− − c1−s2+)

(
s1+c2− − s1−c2+

s1+c2−
c1+s2−

)
. (5.7)

We have normalized theR-matrix so that it satisfies the initial condition

Ř(θ1 = θ0, θ2 = θ0) = id (5.8)

where id is the identity operator.
Now we shall observe theU = 0 andU = ∞ limit of the R-matrix (5.4).
(1) U = 0. The parametersψi, i = 1, 2 are zero andz12 is unity, and therefore we have

Ř12(θ1, θ2) −→ Ř
(U=0)
12 (θ1− θ2) = Ř(σ )12 (θ1− θ2)Ř

(τ)

12 (θ1− θ2). (5.9)

(2) U = ∞. The spectral parameterθi, i = 1, 2, are zero, andz12 is unity. We consider
ψi, i = 1, 2, as the spectral parameters. Then

Ř12(θ1, θ2) −→ Ř
(U=∞)
12 (ψ1− ψ2) = F12{Ř(σ )12 (ψ1− ψ2)Ř

(τ)

12 (ψ1− ψ2)}F−1
12 . (5.10)
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Thus theR-matrix (5.4) reduces to the one discussed in section 4 in the limitU = 0 and
U = ∞.

For the later use, we introduce another equivalent form of the Yang–Baxter relation
(5.1),

R12(θ1, θ2)Ln,1(θ1)Ln,2(θ2) = Ln,2(θ2)Ln,1(θ1)R12(θ1, θ2) (5.11)

where, withP12 being the permutation operator,

R12(θ1, θ2) ≡ P12Ř12(θ1, θ2). (5.12)

TheR-matrix fulfills the following unitarity relation,

Ř12(θ2, θ1)Ř12(θ1, θ2) = ρ(θ1, θ2) id (5.13)

or equivalently

R21(θ2, θ1)R12(θ1, θ2) = ρ(θ1, θ2) id (5.14)

where

ρ(θ1, θ2) = (z12c1+c2+ + s1+s2+)(c1−c2− + z−1
12 s1−s2−)

×(z−1
12 c1+c2+ + s1+s2+)(c1−c2− + z12s1−s2−). (5.15)

Now we show that the Sutherland equation (4.30) is derived from the Yang–Baxter relation.
We note

Ln,a(θ) = Ra,n(θ, 0). (5.16)

By differentiating the Yang–Baxter relation (5.11) with respect toθ2 at θ2 = 0, we obtain

d

dθ2
R1,n(θ1, θ2)

∣∣∣
θ2=0

L2,1(θ1)+ Ln,1(θ1)L2,1(θ1)Hn,2

= Hn,2Ln,1(θ1)L2,1(θ1)+ Ln,1(θ1)
d

dθ2
R12(θ1, θ2)

∣∣∣∣
θ2=0

. (5.17)

Writing 1→ a, n→ n+ 1, 2→ n, θ1→ θ, θ2→ θ̃ in (5.17), we have

[Hn+1,n, Ln+1,a(θ)Ln,a(θ)] = d

dθ̃
Ra,n+1(θ, θ̃)

∣∣∣∣
θ̃=0

Ln,a(θ)− Ln+1,a(θ)
d

dθ̃
Ra,n(θ, θ̃ )

∣∣∣∣
θ̃=0

.

(5.18)

Comparing (5.18) with (4.30), we see that the operatorQn,a(θ) in the Sutherland equation
(4.30) is given as

Qn,a(θ) = d

dθ̃
Ra,n(θ, θ̃ )

∣∣∣∣
θ̃=0

. (5.19)

6. Lax representation

Consider the operator version of an auxiliary linear problem,

9n+1 = Ln9n d9n
dt
= Mn9n. (6.1)

Consistency condition for (6.1) yields the Lax equation,

dLn
dt
= Mn+1Ln − LnMn. (6.2)
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A model is said to be completely integrable if we can find a Lax pair,Ln andMn, such
that the Lax equation (6.2) is equivalent to the equation of motion of the model. The
explicit forms of the Lax pair for some lattice integrable systems were calculated directly
[42–44]. On the other hand, Izergin and Korepin [15, 45] proved that the Lax equation
follows from the Yang–Baxter relation. Actually, the Lax equation is equivalent to the
Sutherland equation (4.30) [46, 47] (see the appendix). The Lax pair is expressed in terms
of theL-operator and theR-matrix as follows:

Ln = Ln,a(θ)
Mn = iL−1

n,a(θ){Qn,a(θ)− [Hn,n−1, Ln,a(θ)]}

= iL−1
n,a(θ)

{
d

dθ̃
Ra,n(θ, θ̃ )

∣∣∣∣
θ̃=0

− [Hn,n−1, Ln,a(θ)]

}
. (6.3)

Substituting (4.28) and (4.29) into (6.3), we obtain the explicit expression of the Lax operator
Mn for the 1D Bariev model,

Mn = i


M11
n M12

n M13
n M14

n

M21
n M22

n M23
n M24

n

M31
n M32

n M33
n M34

n

M41
n M42

n M43
n M44

n

 (6.4)

where

M11
n =

s+c−
c2+

(1+ U)+ s−
c+
(1− U)

+(1+ t+){(1+ Uτzn)σ+n−1σ
−
n + (1+ Uσzn−1)τ

+
n−1τ

−
n }

+(1− t−){(1+ Uτzn)σ−n−1σ
+
n + (1+ Uσzn−1)τ

−
n−1τ

+
n }

M44
n =

s+
c−
(1+ U)+ s−c+

c2−
(1− U)

+(1+ t−){(1+ Uτzn)σ+n σ−n−1+ (1+ Uσzn−1)τ
−
n−1τ

+
n }

+(1− t−){(1+ Uτzn)σ−n σ+n−1+ (1+ Uσzn−1)τ
+
n−1τ

−
n }

M22
n =

s+
c−
(1+ U)+ s−

c+
(1− U)

+(1+ t−)(1+ Uτzn)σ+n−1σ
−
n + (1− t−)(1+ Uτzn)σ−n−1σ

+
n

+(1+ t+)(1+ Uσzn−1)τ
−
n−1τ

+
n + (1− t+)(1+ Uσzn−1)τ

+
n−1τ

−
n

M33
n =

s+
c−
(1+ U)+ s−

c+
(1− U)

+(1− t+)(1+ Uτzn)σ+n−1σ
−
n + (1+ t+)(1+ Uτzn)σ−n−1σ

+
n

+(1− t−)(1+ Uσzn−1)τ
−
n−1τ

+
n + (1+ t−)(1+ Uσzn−1)τ

+
n−1τ

−
n

M14
n = M41

n = 0

M23
n =

1

c3+c−
{s+c+(1+ U)− s−c−(1− U)}

M32
n =

1

c3−c+
{s−c−(1− U)− s+c+(1+ U)}

M21
n = −

c−
c2+
(1+ U)τ+n −

1

c+
(1+ Uσzn−1)τ

+
n−1

M12
n = −

1

c−
(1+ U)τ−n −

1

c+
(1+ Uσzn−1)τ

−
n−1
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M31
n = −

1

c+
(1+ Uτzn)σ+n −

1

c−
(1+ U)σ+n−1

M13
n = −

1

c+
(1+ Uτzn)σ−n −

c−
c2+
(1+ U)σ−n−1

M42
n = −

1

c−
(1+ Uτzn)σ+n −

c+
c2−
(1− U)σ+n−1

M24
n =

1

c−
(1+ Uτzn)σ−n −

1

c+
(1− U)σ−n−1

M43
n = −

1

c+
(1− U)τ+n −

1

c−
(1+ Uσzn−1)τ

+
n−1

M34
n = −

c+
c2−
(1− U)τ−n −

1

c−
(1+ Uσzn−1)τ

−
n−1. (6.5)

Here

c± = cos(θ ± ψ) s± = sin(θ ± ψ) t± = tan(θ ± ψ). (6.6)

7. Fermionic formulation

Using the method developed by Olmedillaet al [21], we can formulate the Yang–Baxter
relation for the 1D Bariev model in a fermionic fashion.

We write the Jordan–Wigner transformation (2.4) in a matrix form,(
σ+n
σ−n

)
= V 2

n↑

(
c
†
n↑
cn↑

) (
τ+n
τ−n

)
= V 2

n↓

(
c
†
n↓
cn↓

)
. (7.1)

Here

Vn↑ =
(
vn↑ 0

0 v−1
n↑

)
Vn↓ =

(
vn↑un↑rnvn↓ 0

0 (vn↑un↑rnvn↓)−1

)
(7.2)

with the definitions

vns = exp

{
i
π

2

n−1∑
k=1

(nks − 1)

}
uns = exp

{
i
π

2
(nns − 1)

}

rn = exp

{
i
π

2

N∑
k=n+1

(nk↑ − 1)

}
. (7.3)

We introduce the matrixVn as

Vn = Vn↑ ⊗ Vn↓ (7.4)

which has the relation

Vn+1 = Vn(Un↑ ⊗ Un↓) (7.5)

with

Uns =
(
uns 0

0 u−1
ns

)
s =↑,↓ . (7.6)

The fermionicLn operator is obtained from theLn operator through the gauge transformation

Ln,a(θ) = Vn+1Ln,a(θ)V
−1
n . (7.7)
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Explicitly,

Ln,a(θ) =


−fn↑(θ)fn↓(θ) −fn↑(θ)cn↓ icn↑f̃n↓(θ) icn↑cn↓
−if̃n↑(θ)c

†
n↓ f̃n↑(θ)gn↓(θ) cn↑c

†
n↓ icn↑g̃n↓(θ)

c
†
n↑fn↓(θ) c

†
n↑cn↓ gn↑(θ)f̃n↓(θ) gn↑(θ)cn↓

−ic†n↑c
†
n↓ cn↑gn↓(θ) ig̃n↑(θ)c

†
n↓ −g̃n↑(θ)g̃n↓(θ)

 (7.8)

where withs =↑ or ↓
fns(θ) = sin(θ + ψ)− {sin(θ + ψ)− i cos(θ + ψ)}nn,s
f̃ns(θ) = sin(θ − ψ)− {sin(θ − ψ)− i cos(θ − ψ)}nn,s
gns(θ) = cos(θ + ψ)− {cos(θ + ψ)+ i sin(θ + ψ)}nn,s
g̃ns(θ) = cos(θ − ψ)− {cos(θ − ψ)+ i sin(θ − ψ)}nn,s . (7.9)

The fermionicR-matrix is defined by the graded Yang–Baxter relation,

Ř12(θ1, θ2)[Ln(θ1)⊗sLn(θ2)] = [Ln(θ2)⊗sLn(θ1)]Ř12(θ1, θ2) (7.10)

where⊗s means the Grassmann direct product

[A⊗sB]ργ,βδ = (−1)[P(ρ)+P(β)]P(γ )AρβBγδ
P (1) = P(4) = 0 P(2) = P(3) = 1. (7.11)

The fermionicR-matrix is derived from theR-matrix. Substituting the expression (7.7)
into (5.1), we have

Ř12(θ1, θ2)[(V
−1
n+1Ln(θ1)Vn)⊗ (V −1

n+1Ln(θ2)Vn)]

= [(V −1
n+1Ln(θ2)Vn)⊗ (V −1

n+1Ln(θ1)Vn)]Ř12(θ1, θ2). (7.12)

With the diagonal matrix

W = diag(1, 1,−i,−i,−i,−i, 1, 1,−1,−1, i, i, i, i,−1,−1) (7.13)

we can rewrite equation (7.12) as

Ř12(θ1, θ2)[V
−1
n+1⊗ V −1

n+1]W−1(Ln(θ1)⊗sLn(θ2))W [Vn ⊗ Vn]
= [V −1

n+1⊗ V −1
n+1]W−1(Ln(θ2)⊗sLn(θ1))W [Vn ⊗ Vn]Ř(θ1, θ2). (7.14)

In the derivation of (7.14) the following relations are useful:

cn,sun,s = cn,su−1
n,s = cn,s un,scn,s = −u−1

n,scn,s = −icn,s
u−1
n,sc

†
n,s = un,sc†n,s = c†n,s c†n,su

−1
n,s = −c†n,su−1

n,s = ic†n,s . (7.15)

Since the relations

Ř12(θ1, θ2) = (Vj ⊗ Vj )Ř12(θ1, θ2)(V
−1
j ⊗ V −1

j ) (7.16)

hold for j = n andj = n+ 1, the fermionicR-matrix is obtained as

Ř12(θ1, θ2) = WŘ12(θ1, θ2)W
−1 (7.17)
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or explicitly

α1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 α5 0 0 iα11 0 0 0 0 0 0 0 0 0 0 0

0 0 α6 0 0 0 0 0 iα11 0 0 0 0 0 0 0

0 0 0 α4 0 0 −iα18 0 0 iα15 0 0 −α20 0 0 0

0 −iα12 0 0 α6 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0

0 0 0 iα17 0 0 α9 0 0 −α19 0 0 −iα18 0 0 0

0 0 0 0 0 0 0 α7 0 0 0 0 0 −iα14 0 0

0 0 −iα12 0 0 0 0 0 α5 0 0 0 0 0 0 0

0 0 0 −iα16 0 0 −α19 0 0 α10 0 0 iα15 0 0 0

0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 α8 0 0 −iα14 0

0 0 0 −α21 0 0 iα17 0 0 −iα16 0 0 α4 0 0 0

0 0 0 0 0 0 0 iα13 0 0 0 0 0 α8 0 0

0 0 0 0 0 0 0 0 0 0 0 iα13 0 0 α7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α3


The monodromy matrixT (θ) is defined by

T (θ) = LN,a(θ) . . .L1,a(θ) =
N

←∏
n=1

Ln,a(θ). (7.18)

From the local graded Yang–Baxter relation (7.10), we have the global graded Yang–Baxter
relation forT (θ)

R12(θ1, θ2)[T (θ1)⊗sT (θ2)] = [T (θ2)⊗sT (θ1)]R12(θ1, θ2). (7.19)

The transfer matrix is defined by the supertrace of the monodromy matrix,

T (θ) = strT (θ) ≡ tr{(σ z ⊗ σ z)T (θ)}. (7.20)

From the global graded Yang–Baxter relation (7.19), we obtain the commutativity of the
transfer matrices

[T (θ), T (θ ′)] = 0. (7.21)

8. Concluding remarks

In this paper, we have studied the exact integrability of the 1D Bariev model in the
framework of the QISM. We have found the higher conserved currents, which enables
us to assume the form of theL-operator. We have also found the correspondingR-matrix.
TheR-matrix does not have the ‘difference property’ (3.3) for the spectral parameter. This
is consistent with the fact that the Hamiltonian density of the 1D Bariev model does not
satisfy the Reshetikhin’s criterion. We conjecture that theR-matrix (5.4) is a solution of
the Yang–Baxter equation

R12(θ1, θ2)R13(θ1, θ3)R23(θ2, θ3) = R23(θ2, θ3)R13(θ1, θ3)R12(θ1, θ2) (8.1)



Integrability of the one-dimensional Bariev model 1131

under the constraint
sin 2ψ1

sin 2θ1
= sin 2ψ2

sin 2θ2
= sin 2ψ3

sin 2θ3
= U. (8.2)

Indeed we have confirmed some non-trivial matrix elements of the Yang–Baxter
equation (8.1). The Yang–Baxter equation (8.1) implies that a more general inhomogeneous
model is integrable with a transfer matrix

T (θ, {θn}) = tra
←∏
n

Ra,n(θ, θn) (8.3)

such that

[T (θ, {θn}), T (θ ′ , {θn})] = 0 (8.4)

where the parameters{θn} are arbitrary constants.
The constraint (8.2) is very similar to the one under which theR-matrix of the 1D

Hubbard model satisfies the Yang–Baxter equation [23]. TheR-matrix of the 1D Hubbard
model is expressed in a compact form [20, 23]. It is desirable to find a compact expression
for theR-matrix (5.4).

One of the problems which we did not discuss in this paper is the eigenvalues of the
transfer matrix. It may be possible to apply the diagonal-to-diagonal Bethe ansatz method
and obtain the free energy of the corresponding two-layer vertex model [48, 49]. We shall
report this problem elsewhere. The recent approach of the algebraic Bethe ansatz for the
1D Hubbard model [24] may also be applied to the present model.

More recently, the 1D Bariev model was generalized to a two-parameter correlated
hopping model [29]. This model is also solvable by the coordinate Bethe ansatz and contains
several other models as special cases [29]. It is shown that the underlyingR-matrix comes
from the four-dimensional representation of the quantum superalgebraUq(gl(2|1)) [50].
Surprisingly, thisR-matrix has a spectral parameter which satisfies the ‘difference property’
(3.3). This fact seems to be contradictory to our result. However, in their argument
[50], the 1D Bariev model corresponds to the extreme case where a free-parameter in
the representation ofUq(gl(2|1)) diverges, and it is not straightforward to reproduce the
R-matrix of the 1D Bariev model. We shall try to clarify these relationships in the future.

Finally, we would like to mention a different approach to the integrability of the 1D
Bariev model, based on the representation of the affine Hecke algebra [51]. It is shown that
the 1D Bariev model becomes theδ-function interacting fermions in the continuum limit.
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Appendix. Lax equation from the Sutherland equation (4.30)

From (4.30), we can derive the following two relations:

[Hn+1,n, Ln,a(θ)] = −Qn,a(θ)+ L−1
n+1,a(θ)Qn+1,a(θ)Ln,a(θ)

−L−1
n+1,a(θ)[Hn+1,n, Ln+1,a(θ)]Ln,a(θ) (A.1)
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[Hn,n−1, Ln,a(θ)] = Qn,a(θ)− Ln,a(θ)Qn−1,a(θ)L
−1
n−1,a(θ)

−Ln,a(θ)[Hn,n−1, Ln−1,a(θ)]L
−1
n−1,a(θ). (A.2)

Then the time evolution of theL-operator becomes

d

dt
Ln,a(θ) = i[H,Ln,a(θ)]

= i[Hn+1,n, Ln,a(θ)] + i[Hn,n−1, Ln,a(θ)]

= iL−1
n+1,a(θ){Qn+1,a(θ)− [Hn+1,n, Ln+1,a]}Ln,a(θ)
−iLn,a(θ){Qn−1,a(θ)+ [Hn,n−1, Ln−1,a]}L−1

n−1,a(θ). (A.3)

Again from (4.30), the following relation holds:

L−1
n,a(θ){Qn,a(θ)− [Hn,n−1, Ln,a(θ)]} = {Qn−1,a(θ)+ [Hn,n−1, Ln−1,a(θ)]}L−1

n−1,a(θ). (A.4)

Thus equation (A.3) is cast into the form of the Lax equation (6.2),

d

dt
Ln,a(θ) = Mn+1,a(θ)Ln,a(θ)− Ln,a(θ)Mn,a(θ) (A.5)

where

Mn,a(θ) = iL−1
n,a(θ){Qn,a(θ)− [Hn,n−1, Ln,a(θ)]}. (A.6)
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